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Part I: Data problems in ML
Corroborative, game-theoretic, and predictive data attribution
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Predictive attribution (Datamodeling)
In some cases, we still care about causality, but not fair credit assignment  

Predictive data attribution (or datamodeling) answers questions of the form: 
If instead of training on my training set , I instead trained on a different training 
set , how would my model’s behavior change?

S
S′ 

Motivation [Koh Liang ’17; Ilyas Park Engstrom Leclerc Madry ’22]
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We are going to see that simple predictors work well!  
[Koh & Liang 2017; Ilyas et al. 2022; Guu et al. 2023; Bae et al. 2024, many others…]
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In this talk, we’ll focus on predictive data attribution (i.e., datamodeling)
Rich history in statistics and machine learning
Relevance to modern problems (e.g., data selection for LLMs)
Rapid progress in the last few years
Lots of room for improvement

Let’s begin!
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∑
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Cross-validation [Stephenson et al. ’20; Wilson et al. ’20; Rad & Maleki ‘18], 
uncertainty estimation  [Vovk et al. ’99; Giordano et al. ’23], many others

Key words: von Mises calculus [von Mises ’47]; infinitesimal jackknife [Jaeckel ’72]; 
influence functions/influence curve [Hampel ’74]; regression analysis [Pregibon ’81]
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Assume linear losses  (true for logistic regression, LASSO, etc.)ℓi(θ) = ℒi(θ⊤xi)

Let , so that L−j(θ) = ∑
j≠i

ℒi(θ⊤x) θ*−j = arg min
θ

L−j(θ)

Form a quadratic approximation of  around the point , use the 
(closed-form) solution as an estimate of  

L−j(θ) θ*(1n)
θ*(1n − Indn[ j])
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LOO for more complex (linear) models
[Pregibon ’81; Shao & Tu ’12; Rad & Maleki ’20]

Applying our approximation to the logistic regression example from before:

We successfully predict the effect of dropping the sample!

Predicted θ*−j
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Applying our approximation to the logistic regression example from before: 

We successfully (but less accurately) predict the effect of dropping the sample!

Predicted θ*−j

Bonus: Estimator also (trivially) applies beyond LOO estimation 
See the notes for details! [GSLJB ’18; KATL ’19]
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Estimation of parameters under weighted re-fitting 

Variety of rigorous estimators depending on problem setting 
Linear model, least-squares → closed form solution 
Linear model, convex loss → quadratic approximation in parameter (  ) space 
Non-linear model, convex loss → linear approximation in data weight ( ) space

θ
w

Up next: What about non-linear, non-convex models?



5 minute break!
ml-data-tutorial.org

http://ml-data-tutorial.org
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Predictive attribution in practice
Scaling to deep learning
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1. Training a model  on  using the specified learning algorithmθ(S) S
2. Evaluating the output of interest  on the trained modelℓ( ⋅ )

Datamodel: Given any dataset , return a prediction  S ⊂ 𝒰 ̂f(S) ≈ f(S)

Formal definition [Ilyas Park Engstrom Leclerc Madry ’22]

Fix:
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Datamodeling: Given example , predict  (exactly the LOO problem!)zj f(𝒰∖{zj})

Taylor-based estimator (Influence function):  ̂f(S∖{zj}) := f(S) − H−1gj

[Koh Liang ’17]

Fix:
Data universe 𝒰

Dataset S
ML algorithm A

θ(S) = arg minθ ∑n
zi∈S ℓi(θ)

Specific output ℓ( ⋅ )
Test loss ℓ(θ) = θ

Does this work for NNs? (Strong convexity & convergence both violated!)

SGD on a DNN Loss on a specific example
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First idea: direct translation (convex → ML)
Result: Seems to work in some settings (small CNNs)

Each      is a single 
training example 

[Koh Liang ’17]

Influence function (IF) estimator  
(Taylor-based LOO in loss space) 

̂f(S∖{zj}) := f(S) − ∇ℓ(θ)⊤H−1gj

Compute its Hessian

Train one model

Re-training
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Qualitatively, do the examples with largest LOO effects “make sense”?

First idea: direct translation (convex → ML)
[Koh Liang ’17; Schioppa, Zablotskaia, Vilar, Sokolov ’22]

Promising sign: training examples with biggest predicted LOO effect  
on loss resemble the “target” test examples!

Target Positively influencing Negatively influencing
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Does the influence function work reliably?
IF seems to be fragile/limited to small models [Basu Pope Feizi ’17] 

Sensitive to hyperparameters; worse for deeper & wider models

Drawbacks of the direct approach

Depth hurts quality

Number of layers
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Setup: training set  consisting of both CIFAR-10 and MNIST examples 
Apply LOO estimator (and related ones) to loss on a single example 
Visualize training examples with the highest LOO effect
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Influence function
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Failed sanity check: “highest-impact” examples are from other dataset!



Does the influence function work reliably?
IF does not actually approximate re-training [Bae Ng Lo Ghassemi Grosse ’22] 

Lack of convexity, convergence, etc. mean that influence functions do not actually 
approximate LOO (unlike in the convex case)

Drawbacks of the direct approach

IF vs LOO

Influence function output
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Ran into some issues:

Parameter-space updates are fragile [BPF17]
“Most impactful” training examples can fail basic sanity checks [HL22]
Even conceptually, might not be an LOO approximation [BNLGG22]

What now?
Try new ways to adapt classical (statistical) LOO estimator?
Give up and try ML-specific techniques for estimating LOO?

Clearly room for improvement—but how will we measure progress?
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Recall: output of predictive data attribution is a datamodel function  such that̂f

 for any ̂f(S) ≈ ℓ(𝒜(S)) S ⊂ 𝒰

Idea: Treat this as a learning problem, use population error to evaluate success:

 LDS𝒟 := 𝔼S(1)…S(m)∼𝒟 [Correlation ({f(S(i))}m
i=1, { ̂f(S(i))}m

i=1)]
distribution 

over subsets
true output of  model 

trained on subsetsubsets sampled 
from the distribution

predicted output of  
model trained on subset
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Example (Influence function estimator):

1. Sample many random 50% subsets S(1), S(2), . . . , S(m) ⊂ U

2. Apply learning algorithm  to each  to obtain 𝒜 S(m) f(S(i))

3. Construct predicted output using LOO estimates (e.g., using the IF):

 ̂f(S′ ) := f(S) − ∑
i∈S∖S′ 

LOO(i)

4. Measure Correlation ({f(S(i))}m
i=1, { ̂f(S(i))}m

i=1)

Can pre-compute just once! 
Evaluate any new estimates}
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Results: influence function estimator

Confirms intuition that the IF estimator does not scale

𝔼[ f(Si)]
True output

CIFAR-10, ResNet-9

ρ = 0.05

Predicted output  ̂f(Si)
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Note that the influence function estimator we looked at thus far is linear, i.e., 

But neural network training is very complex!

What if  is too complicated to model with a linear datamodel?S′ ↦ f(S′ )

Is there a good linear datamodel?

̂f(S′ ) = ∑
i∈S′ 

τi
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β* = arg min
β ∑
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(f(Si) − ̂fβ(Si))
2

+ λ∥β∥1

Estimating datamodels directly

Solve (regularized) linear regression to estimate !β*

[Feldman Zhang ’20; Ilyas Park Engstrom Leclerc Mądry ’22; Lin Zhang Lecuyer Li Panda Sen ’22]
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True output

CIFAR-10, ResNet-9

Sample new random subsets , compare predictions and ground-truthSi
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𝔼[ f(Si)]
True output

CIFAR-10, ResNet-9

Sample new random subsets , compare predictions and ground-truthSi

ρ = 0.91

ρ = 0.82
ρ = 0.88

ρ = 0.82

Predicted output  ̂f(Si)Finding: linear model can predict model behavior from data!

Evaluating linear datamodels
[Ilyas Park Engstrom Leclerc Mądry ’22]
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Why do classical methods (Chapter 2) no longer work for DNNs? 

New challenges: 

Non-convexity            

Randomness                 is a random variable 

Non-convergence      Not trained to convergence 

Large-scale / high-dimensionality 

 

∇2
θL ⪰̸ 0

θ(S)

Why do old methods fail?

Can we bridge the gap between efficient estimators and direct estimators?
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Many works have tried to circumvent these challenges

Themes:

Better IF/Hessian approximations

Approximating training dynamics (“unrolling”)

Simple surrogate models

Next, we’ll look at how each approach works at a high-level
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Replace Hessian with the “Gauss Newton Hessian” (GNH) approximation 

Assume loss   

 

 is guaranteed to be p.s.d.   well-defined for any  

                            IF estimates are well-defined

ℓ(h(x, θ), y)

H̃ = J⊤DJ ⪰ 0

H̃ ⇒ (H̃ + λI)−1 λ > 0
⇒
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By leveraging structure of DNNs, we can make IFs work much better
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Problem: This is very expensive to compute! (  Hessians 😬)
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split sum into segments with  
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It is possible to approximately “retrace” the GD trajectory
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Simple surrogate models

Training Dataset
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Simple surrogate models: TRAK 

Differentiable  
model θ⋆

Step 1:  
Linearization

High-dim 
linear model θ(L)

Step 2:  
Random projection

Low-dim 
linear model   θ (P)

Step 3:  
Apply Influence Function 

Well-designed surrogate models can be a good proxy for attributing original NN

[Park Georgiev Ilyas Leclerc Madry ’23]
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Evaluating the landscape
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Evaluating the landscape

Popular baselines (original IF, rep. similarity, TracIn) not very predictive
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Evaluating the landscape

Direct estimators (regression) perform best with enough compute
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Now have efficient methods (e.g., TRAK, EK-FAC) that approach similar LDS



Evaluating the landscape

Trade-offs depending on target task:  
e.g., TRAK better on vision, EK-FAC better for language modeling
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Evaluating the landscape

Main takeaway: we have fast, predictive methods now! Use them
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Takeaways
If you care about predictive attribution, evaluate counterfactuals 

Use LDS or similar 

Use good attribution methods! 

Many popular baselines are not predictive, but some are quite reliable now 

Some key themes (better Hessian approximation; unrolling; surrogate models) 

Choose method appropriate to modality and costs



Future work
Better methods 

Beyond linear methods 

Multiple training stages 

Are there better “surrogate” models for DNNs? 

“Single model counterfactual” 

More efficient evaluation proxies 
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Applying data attribution
Current and future applications of data attribution
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Example: why is my model wrong?   

Data-centric answer: look at data to find potential explanations

Model debugging: motivation
Goal: "understand" model behavior

Model Predict

+Training data

Data

"ship"

What is this? 

🤔
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"Importance" means something different in each data attribution framework!
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⋯ ⋯Train Sample

Data Model output

Loss on

+0.01 -0.03 -0.02-2.31

Common approach: give each training sample an "importance," then inspect

Predictive view: each weight is effect of "training on sample" on margin
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⋯ ⋯Train Sample

Importance

Loss on

+0.01 -0.03 -0.02-2.31

Common approach: give each training sample an "importance," then inspect

margin on≈

Predictive view: each weight is effect of "training on sample" on margin

*without training on  
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 0.67 0.5  0.820.05⋯ + ⋯

⋯ ⋯Train Sample

Importance

Loss on

+0.01 -0.03 -0.02-2.31

Common approach: give each training sample an "importance," then inspect

Corroborative view: each weight is similarity to sample 

Data lens: find potential explanations in the training data

Data Model outputModel training



Model debugging with data attribution



What do these "importances" yield?

Model debugging with data attribution



What do these "importances" yield?
One approach: inspect most influential samples.. obvious hypothesis arises! 🌅

Model debugging with data attribution



What do these "importances" yield?
One approach: inspect most influential samples.. obvious hypothesis arises! 🌅

Model debugging with data attribution



What do these "importances" yield?
One approach: inspect most influential samples.. obvious hypothesis arises! 🌅

Model debugging with data attribution



What do these "importances" yield?
One approach: inspect most influential samples.. obvious hypothesis arises! 🌅

Conceptual questions: verifying generated hypotheses, operationalizing insights

Model debugging with data attribution



What do these "importances" yield?
One approach: inspect most influential samples.. obvious hypothesis arises! 🌅

Conceptual questions: verifying generated hypotheses, operationalizing insights
References: [Koh Liang 2017; Ghorbani Zou 2019; Guo et al. 2020; Pruthi et al. 2020;  
Tang et al. 2021a,b; Basu et al. 2021; Ilyas et al. 2022; Shah et al. 2022; Karlaš et al. 2022; 
Grosse et al. 2023; Park et al. 2023; Rosenfeld Risteski 2023; Konz et al. 2023; Wang et 
al. 2023; Xia et al. 2024]

Model debugging with data attribution



Four applications
Model debugging 

Understanding model behavior 

Dataset selection 
Choosing the best training data 

Data poisoning 
Constructing the worst training data 

Machine unlearning 
Forgetting previously learned data

Predictive data attribution
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Given a task:
1. Rewrite problem in terms of model outputs
2. Plug-in predictive data attribution estimate for model output (then solve)

Formula for applying (predictive) data attribution
Data subset S ⊂ U

ℓ (z, θ(S)) ≈ ̂fz(S)

Estimate output after training on S

Yields a surprisingly versatile framework
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Dataset selection: choose the best possible training data to train on 

Problem: Much of the internet is "low quality" – what data should we train on?

Dataset selection: motivation

+Scraped internet data

electroniccigarettereviewed.info 
prestigedentalproducts.com 

brain-dumps.us

http://ufdc.ufl.edu/AA00010883/00095
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Dataset selection task: choose train set that minimizes target task loss

min
S⊂U

𝔼z∼Dtarg
ℓ(z; θ(S))

Solution sketch with data attribution:

1. Plug-in data attribution to estimate loss

̂fz(S) ≈ ℓ(z; θ(S)

2. Find train subset that minimizes the data attribution loss estimate:

min
S⊂U

𝔼z∼Dtarg [ ̂fz(S)]

Dataset selection with predictive data attribution
Step 2: Plug in data attribution estimate for model output

Requires training a model on S

Easy to optimize/evaluate
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Selecting data with data attribution
References: [Schoch et al. 2023; Wang et al. 2023; Wang et al. 2024; Engstrom et al. 
2024; Xia et al. 2024; Jiao et al. 2024; Chhabra et al. 2024; Jain et al. 2024]

Big conceptual question: operationalizing dataset selection
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Data poisoning: an adversary changes some training data to hurt model behavior 

  

 

 Relevant to any task with third party (e.g., web-scraped/crowdsourced) data

Example: political candidate uploads internet text that makes LM disfavor a rival

Data poisoning: motivation

+

Train model Predict

Training data

Collect data

Consider the standard ML pipeline:
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Adversary designs training data  to increase loss on the (specified) target task 

 Optimization problem: 

Sadv
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Data poisoning with data attribution
Approaches: [Biggio et al. 2013; Koh Liang 17; Xiao et al. 2018; Fang et al. 2020; Koh 
et al. 2021; Wu et al. 2023]

Conceptual questions: scaling to large-scale learning problems, threat models

[Koh Liang 17]Poison

→

Target



Four applications
Model debugging 

Understanding model behavior 

Dataset selection 
Choosing the best training data 

Data poisoning 
Constructing the worst training data 

Machine unlearning 
Forgetting previously learned data

Predictive data attribution
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Machine unlearning goal: given "forget set" and a trained model, modify predictions 
to behave as if the model had never trained on the set.

 What if customer(s) want to "delete" data? Model retraining is expensive!

ML pipeline:

Machine unlearning: motivation

Training data

Collect data Train model Deploy (predict)

Grandma's secret 
cookie recipe

"Sure, here's a 
great cookie recipe..."
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Unlearning: estimate model outputs  as if the model had not trained on f (z; θ(S∖F)) F

Machine unlearning with data attribution

(e.g., logits in classification setting)

Training data S

Collect data Train model
Forget set F

Unlearned outputs

f (z; θ(S∖F))

Step 1: Rewrite in terms of model outputs

First step ✅
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Given model  trained on dataset , forget set , and test sample :θ(S) S F z

Machine unlearning: estimate output   of a model trained without f (z; θ(S∖F)) F

Data attribution solution concept: estimate "unlearned" outputs directly via

̂fz (S∖F) ( ≈ f (z, θ(S∖F)))
References: [Guo et al. 2020; Sekhari et al. 2021; Suriyakumar et al. 2022; Tanno et 
al. 2022; Warnecke et al. 2023; Georgiev et al. 2024] 

Machine unlearning with data attribution
Step 2: Plug in data attribution estimate for model output
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Data attribution helps in "model understanding" tasks

But also solves a richer set of tasks
Predictive data attribution uses a simple formula:
(1) Write in terms of model outputs, then (2) plug-in data attribution

Other major applications:
• Data valuation: how much is training data worth?
• Citations: how can we ground predictions in truth?
• RAG: halfway between "dataset selection" and "citations"

Takeaways: applying data attribution



Epilogue

Concluding notes
"All good stories must come to an end"



Recap
Part I: Data problems in ML 

Corroborative, game-theoretic, and predictive data attribution 

Part II: Theoretical foundations 
History & theory of predictive data attribution (datamodeling) 

Part III: Scaling to modern settings 
Challenges & successes in predictive data attribution for large ML systems 

Part IV: Scaling to modern settings 
Past, present, and future applications of data attribution
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Focussing on large-scale model setting: rapid progress in recent years
• Classical methods first applied to "machine learning" in 2017 [KL 2017]
• Frameworks for SOTA methods are even more recent

Yet, still room for improvement: "TDA... not well known [nor] used" [NKS+ 2023]
• Effectiveness
• Compute efficiency
• Translation to practice

Opinionated perspective: are we "there" yet?

Prediction: data attribution will be standard part of ML pipeline in 5 years
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